

Série 10

Exercice 10.1

Considérons l'oscillateur amorti à deux degrés de liberté illustré à la Figure 10.1.1. Le système est constitué d'une masse m_1 , reliée au sol par un ressort de rigidité k_1 et un amortisseur de résistance c_1 , et d'une masse m_2 couplée à la précédente par un ressort de rigidité k_{12} et un amortisseur de constante c_{12} . Les deux masses sont caractérisées par les déplacements respectifs x_1 et x_2 .

Ecrire l'équation différentielle du mouvement sous forme matricielle et déterminer la relation existante entre les coefficients d'amortissement c_1 et c_{12} lorsque la condition de Caughey est satisfaite.

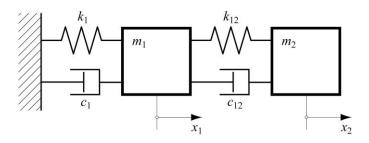


Figure 10.1.1 | Oscillateur amorti à deux degrés de liberté.

Exercice 10.2

Pour l'oscillateur amorti à deux degrés de liberté étudié à l'exercice précédent, Figure 10.2.1 sachant que les rigidités k_1 et k_{12} sont maintenant identiques et que la masse m_1 est égale au double de la masse m_2 .

Avec le coefficient d'amortissement de couplage c_{12} calculé dans l'exercice antérieur pour avoir un système Caughey, évaluer les pulsations propres, les modes propres, les matrice de masses, dissipations et rigidités modales et en déduire les fréquences propres et les amortissements modaux.

Application numérique : m_1 = 20 kg, m_2 = 10 kg, k_1 = k_{12} = 10 000 N/m, c_1 = 100 kg/s.

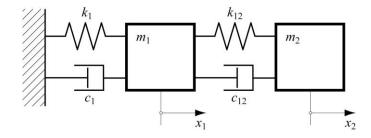


Figure 10.2.1 | Oscillateur amorti à deux degrés de liberté.

Exercice 10.3

Pour l'oscillateur amorti étudié aux deux exercices précédents, Figure 10.3.1, le coefficient d'amortissement de couplage c_{12} vaut 50 kg/s, les autres grandeurs gardant leur valeur d'origine. C'est-à-dire m_1 = 20 kg, m_2 = 10 kg, k_1 = k_{12} = 10 000 N/m, c_1 = 100 kg/s.

Déterminer les fréquences propres, ainsi que les amortissements relatifs modaux

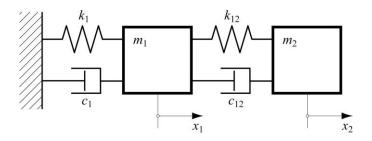


Figure 10.3.1 | Oscillateur amorti à deux degrés de liberté.